Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.

Identifieur interne : 000985 ( Main/Exploration ); précédent : 000984; suivant : 000986

The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.

Auteurs : Sevgi Ceylan [Allemagne] ; Vera Seidel ; Nicole Ziebart ; Carsten Berndt ; Natalie Dirdjaja ; R Luise Krauth-Siegel

Source :

RBID : pubmed:20826822

Descripteurs français

English descriptors

Abstract

Trypanosoma brucei, the causative agent of African sleeping sickness, possesses two dithiol glutaredoxins (Grx1 and Grx2). Grx1 occurs in the cytosol and catalyzes protein deglutathionylations with k(cat)/K(m)-values of up to 2 × 10(5) M(-1) S(-1). It accelerates the reduction of ribonucleotide reductase by trypanothione although less efficiently than the parasite tryparedoxin and has low insulin disulfide reductase activity. Despite its classical CPYC active site, Grx1 forms dimeric iron-sulfur complexes with GSH, glutathionylspermidine, or trypanothione as non-protein ligands. Thus, contrary to the generally accepted assumption, replacement of the Pro is not a prerequisite for cluster formation. T. brucei Grx2 shows an unusual CQFC active site, and orthologues occur exclusively in trypanosomatids. Grx2 is enriched in mitoplasts, and fractionated digitonin lysis resulted in a co-elution with cytochrome c, suggesting localization in the mitochondrial intermembrane space. Grx2 catalyzes the reduction of insulin disulfide but not of ribonucleotide reductase and exerts deglutathionylation activity 10-fold lower than that of Grx1. RNA interference against Grx2 caused a growth retardation of procyclic cells consistent with an essential role. Grx1 and Grx2 are constitutively expressed with cellular concentrations of about 2 μM and 200 nM, respectively, in both the mammalian bloodstream and insect procyclic forms. Trypanothione reduces the disulfide form of both proteins with apparent rate constants that are 3 orders of magnitude higher than those with glutathione. Grx1 and, less efficiently, also Grx2 catalyze the reduction of GSSG by trypanothione. Thus, the Grxs play exclusive roles in the trypanothione-based thiol redox metabolism of African trypanosomes.

DOI: 10.1074/jbc.M110.165860
PubMed: 20826822
PubMed Central: PMC2966136


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.</title>
<author>
<name sortKey="Ceylan, Sevgi" sort="Ceylan, Sevgi" uniqKey="Ceylan S" first="Sevgi" last="Ceylan">Sevgi Ceylan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seidel, Vera" sort="Seidel, Vera" uniqKey="Seidel V" first="Vera" last="Seidel">Vera Seidel</name>
</author>
<author>
<name sortKey="Ziebart, Nicole" sort="Ziebart, Nicole" uniqKey="Ziebart N" first="Nicole" last="Ziebart">Nicole Ziebart</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Dirdjaja, Natalie" sort="Dirdjaja, Natalie" uniqKey="Dirdjaja N" first="Natalie" last="Dirdjaja">Natalie Dirdjaja</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20826822</idno>
<idno type="pmid">20826822</idno>
<idno type="doi">10.1074/jbc.M110.165860</idno>
<idno type="pmc">PMC2966136</idno>
<idno type="wicri:Area/Main/Corpus">000975</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000975</idno>
<idno type="wicri:Area/Main/Curation">000975</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000975</idno>
<idno type="wicri:Area/Main/Exploration">000975</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.</title>
<author>
<name sortKey="Ceylan, Sevgi" sort="Ceylan, Sevgi" uniqKey="Ceylan S" first="Sevgi" last="Ceylan">Sevgi Ceylan</name>
<affiliation wicri:level="3">
<nlm:affiliation>Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Karlsruhe</region>
<settlement type="city">Heidelberg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seidel, Vera" sort="Seidel, Vera" uniqKey="Seidel V" first="Vera" last="Seidel">Vera Seidel</name>
</author>
<author>
<name sortKey="Ziebart, Nicole" sort="Ziebart, Nicole" uniqKey="Ziebart N" first="Nicole" last="Ziebart">Nicole Ziebart</name>
</author>
<author>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
</author>
<author>
<name sortKey="Dirdjaja, Natalie" sort="Dirdjaja, Natalie" uniqKey="Dirdjaja N" first="Natalie" last="Dirdjaja">Natalie Dirdjaja</name>
</author>
<author>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Catalytic Domain (MeSH)</term>
<term>Cytochromes c (genetics)</term>
<term>Cytochromes c (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (analogs & derivatives)</term>
<term>Glutathione (genetics)</term>
<term>Glutathione (metabolism)</term>
<term>Mitochondrial Membranes (enzymology)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protozoan Proteins (genetics)</term>
<term>Protozoan Proteins (metabolism)</term>
<term>Spermidine (analogs & derivatives)</term>
<term>Spermidine (metabolism)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
<term>Trypanosoma brucei brucei (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cytochromes c (génétique)</term>
<term>Cytochromes c (métabolisme)</term>
<term>Domaine catalytique (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (analogues et dérivés)</term>
<term>Glutathion (génétique)</term>
<term>Glutathion (métabolisme)</term>
<term>Membranes mitochondriales (enzymologie)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de protozoaire (génétique)</term>
<term>Protéines de protozoaire (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Spermidine (analogues et dérivés)</term>
<term>Spermidine (métabolisme)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Trypanosoma brucei brucei (enzymologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Glutathione</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cytochromes c</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Mitochondrial Proteins</term>
<term>Protozoan Proteins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytochromes c</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Mitochondrial Proteins</term>
<term>Protozoan Proteins</term>
<term>Spermidine</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Glutathion</term>
<term>Spermidine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Membranes mitochondriales</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Mitochondrial Membranes</term>
<term>Trypanosoma brucei brucei</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cytochromes c</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de protozoaire</term>
<term>Protéines mitochondriales</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochromes c</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Protéines de protozoaire</term>
<term>Protéines mitochondriales</term>
<term>Spermidine</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Catalytic Domain</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Domaine catalytique</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trypanosoma brucei, the causative agent of African sleeping sickness, possesses two dithiol glutaredoxins (Grx1 and Grx2). Grx1 occurs in the cytosol and catalyzes protein deglutathionylations with k(cat)/K(m)-values of up to 2 × 10(5) M(-1) S(-1). It accelerates the reduction of ribonucleotide reductase by trypanothione although less efficiently than the parasite tryparedoxin and has low insulin disulfide reductase activity. Despite its classical CPYC active site, Grx1 forms dimeric iron-sulfur complexes with GSH, glutathionylspermidine, or trypanothione as non-protein ligands. Thus, contrary to the generally accepted assumption, replacement of the Pro is not a prerequisite for cluster formation. T. brucei Grx2 shows an unusual CQFC active site, and orthologues occur exclusively in trypanosomatids. Grx2 is enriched in mitoplasts, and fractionated digitonin lysis resulted in a co-elution with cytochrome c, suggesting localization in the mitochondrial intermembrane space. Grx2 catalyzes the reduction of insulin disulfide but not of ribonucleotide reductase and exerts deglutathionylation activity 10-fold lower than that of Grx1. RNA interference against Grx2 caused a growth retardation of procyclic cells consistent with an essential role. Grx1 and Grx2 are constitutively expressed with cellular concentrations of about 2 μM and 200 nM, respectively, in both the mammalian bloodstream and insect procyclic forms. Trypanothione reduces the disulfide form of both proteins with apparent rate constants that are 3 orders of magnitude higher than those with glutathione. Grx1 and, less efficiently, also Grx2 catalyze the reduction of GSSG by trypanothione. Thus, the Grxs play exclusive roles in the trypanothione-based thiol redox metabolism of African trypanosomes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20826822</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>285</Volume>
<Issue>45</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
<Day>05</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>35224-37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M110.165860</ELocationID>
<Abstract>
<AbstractText>Trypanosoma brucei, the causative agent of African sleeping sickness, possesses two dithiol glutaredoxins (Grx1 and Grx2). Grx1 occurs in the cytosol and catalyzes protein deglutathionylations with k(cat)/K(m)-values of up to 2 × 10(5) M(-1) S(-1). It accelerates the reduction of ribonucleotide reductase by trypanothione although less efficiently than the parasite tryparedoxin and has low insulin disulfide reductase activity. Despite its classical CPYC active site, Grx1 forms dimeric iron-sulfur complexes with GSH, glutathionylspermidine, or trypanothione as non-protein ligands. Thus, contrary to the generally accepted assumption, replacement of the Pro is not a prerequisite for cluster formation. T. brucei Grx2 shows an unusual CQFC active site, and orthologues occur exclusively in trypanosomatids. Grx2 is enriched in mitoplasts, and fractionated digitonin lysis resulted in a co-elution with cytochrome c, suggesting localization in the mitochondrial intermembrane space. Grx2 catalyzes the reduction of insulin disulfide but not of ribonucleotide reductase and exerts deglutathionylation activity 10-fold lower than that of Grx1. RNA interference against Grx2 caused a growth retardation of procyclic cells consistent with an essential role. Grx1 and Grx2 are constitutively expressed with cellular concentrations of about 2 μM and 200 nM, respectively, in both the mammalian bloodstream and insect procyclic forms. Trypanothione reduces the disulfide form of both proteins with apparent rate constants that are 3 orders of magnitude higher than those with glutathione. Grx1 and, less efficiently, also Grx2 catalyze the reduction of GSSG by trypanothione. Thus, the Grxs play exclusive roles in the trypanothione-based thiol redox metabolism of African trypanosomes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ceylan</LastName>
<ForeName>Sevgi</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Biochemie-Zentrum der Universität Heidelberg, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seidel</LastName>
<ForeName>Vera</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ziebart</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Berndt</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dirdjaja</LastName>
<ForeName>Natalie</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krauth-Siegel</LastName>
<ForeName>R Luise</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>09</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015800">Protozoan Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C114110">tryparedoxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>33932-35-3</RegistryNumber>
<NameOfSubstance UI="C012333">glutathionylspermidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-43-6</RegistryNumber>
<NameOfSubstance UI="D045304">Cytochromes c</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>96304-42-6</RegistryNumber>
<NameOfSubstance UI="C044809">trypanothione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U87FK77H25</RegistryNumber>
<NameOfSubstance UI="D013095">Spermidine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045304" MajorTopicYN="N">Cytochromes c</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051336" MajorTopicYN="N">Mitochondrial Membranes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015800" MajorTopicYN="N">Protozoan Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013095" MajorTopicYN="N">Spermidine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014346" MajorTopicYN="N">Trypanosoma brucei brucei</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20826822</ArticleId>
<ArticleId IdType="pii">M110.165860</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M110.165860</ArticleId>
<ArticleId IdType="pmc">PMC2966136</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2000 Mar 17;275(11):7547-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10713060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2006 Feb;97(2):151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16310752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 17;277(20):17548-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11867629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2002 Jun 15;364(Pt 3):617-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11958675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Aug 2;295(5):1046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12135599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 2002 Nov-Dec;125(1-2):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12467989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2003 Apr;384(4):619-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12751791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 21;278(47):46329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7740-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14668336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1975 Apr 10;250(7):2648-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1091640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Protozool. 1975 Nov;22(4):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1195156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 May 10;254(9):3664-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">372193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1979 Oct 10;254(19):9627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">385588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Jun 25;257(12):6686-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7045093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1990;63:69-172</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2407068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biochem Parasitol. 1991 Jan;44(1):145-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2011150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Sep 10;30(36):8883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1888746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1992 Oct 1;209(1):207-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1327770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1992;46:695-729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1444271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1994 Feb 4;235(5):1585-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8107093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Mar 18;36(11):3199-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9115997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6959-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9192674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Sep 15;248(3):913-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jul 4;45(26):7998-8008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16800625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Jan;9(1):151-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17115894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Feb 15;402(1):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17040206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Feb 2;282(5):3077-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8678-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 May 1;104(18):7379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17460036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2007 Aug 1;405(3):445-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17456049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Subcell Biochem. 2007;44:231-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18084897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2008 Jan;389(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18095866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Mar;10(3):547-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1236-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18395526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1780(11):1304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18621099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27785-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Nov 21;283(47):32839-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2009 Jan 23;385(3):889-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18992757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2009 Jan;9(2):434-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19105172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2009 Aug;39(10):1059-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19477177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomol NMR Assign. 2008 Jun;2(1):65-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19636927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 May;11(5):1059-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2010 Jan;6(1):e1000731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20107599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Mar 15;12(6):787-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19769456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2010 Apr;24(4):1035-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19952282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1998 May;9(5):1081-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9571241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Jul 24;431(3):381-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9714547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1998 Dec 8;37(49):17145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1999 Feb 19;286(2):541-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9973569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1959 May;82(1):70-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13650640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Feb 25;280(8):6850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15537651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2005 Apr;30(4):205-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15817397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 29;280(17):16559-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 15;309(5733):416-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16020726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2005 Oct 28;353(3):629-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16181638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 6;276(14):10602-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11150302</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Karlsruhe</li>
</region>
<settlement>
<li>Heidelberg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Berndt, Carsten" sort="Berndt, Carsten" uniqKey="Berndt C" first="Carsten" last="Berndt">Carsten Berndt</name>
<name sortKey="Dirdjaja, Natalie" sort="Dirdjaja, Natalie" uniqKey="Dirdjaja N" first="Natalie" last="Dirdjaja">Natalie Dirdjaja</name>
<name sortKey="Krauth Siegel, R Luise" sort="Krauth Siegel, R Luise" uniqKey="Krauth Siegel R" first="R Luise" last="Krauth-Siegel">R Luise Krauth-Siegel</name>
<name sortKey="Seidel, Vera" sort="Seidel, Vera" uniqKey="Seidel V" first="Vera" last="Seidel">Vera Seidel</name>
<name sortKey="Ziebart, Nicole" sort="Ziebart, Nicole" uniqKey="Ziebart N" first="Nicole" last="Ziebart">Nicole Ziebart</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Ceylan, Sevgi" sort="Ceylan, Sevgi" uniqKey="Ceylan S" first="Sevgi" last="Ceylan">Sevgi Ceylan</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000985 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000985 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20826822
   |texte=   The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20826822" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020